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,

denote a basis of

the rector space X .

Let Nol -- I
be any
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Ff E X there exists a unique No )
-
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such that

Ttt) = Htt) xlol , htt > o
-

the map No) EIR
"
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IR " onto X .
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2
. Effect of unimodalar matrices on the

solution function space of the pseudo-slate f.

Let Tls ) E IR Is)r×r be
nmtinjedar and L E IRIs)r×r
be Unimodular

.
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Consider the dolt. equaling
1- (Ide ) 3=0 t > 0

Flite) -5=0 tao

with solution spaces X , Tx
Lunimodular 1=7 4=51
(Unimodular matrices do not alter the

solution space)
Boots. Since L is unimodal L

- '
andL

arepolynomial matrices

Tg = o ET LT-5=79--0
(if } salis lie, T, it also satisfies F)
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,
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.
State associated with a pseudo -state trajectory
and constructing Yu 's . ,

a basis of X .

→ perform a

"
canonical

"

realignTim
of Tl 9=0

Slept Reduce to hermit "canonical "from
1-1¥,. ) 7=0 , Tls)g =o

(similar to the Smith form, but only
reducing so as to introduce Zeros below
the main diagonalof Tts)) .

Sle find solutions to the diagonal
elements
,
scalar o.d.es

.

steps proceed inductively using theprevious
solutions by rolling a forced o.de .

an example will dacify this step .
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the rector space of trajectories
span 4441411 = X .
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staE-spaetaj.cc/oTigix=AxtBu(y=CxeDu
Lot al .) be a given input,
let ee, compute the solution

,(trajectory ),
{ xlxqt, all) ) .

First
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consider without input,
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x. = Ax

Xlt) = eat. xo
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Cayley- Hamilton theorem :

ACA ) = Mt x, dn-tx.FI
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use An = - a, An
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'

Ii get Bo,
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Exam#
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Them : such an equation is also valid

on the spectrum of A -

i.e
. et ' = Pod , -113,
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A- =L 's ? ] NA ) --41+44-6)
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p, -_e÷ + Eye '

→ then eatB becomes a linear ftp.emgirg)
linear combination of

[B AB -
-
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e.
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x' = Ax + Bu
what is hxlt, xo, ul. ) ) ) ?

the solution trajectory .
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dat ( e-At. x) = face -At) x +e-At. I

= - A e -Atx + e-
At (AxtBu)

run -run

= - Aeftttx + Afttx + e-AtBee
= e-

AtBa
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J. Controllability
-

Definition. I = AxtBu
The pair (A,B) is said to be controllable
it for any initialstate and any final-
-

TIE, there exists an input that banters

Xo to X
,
in finite time .

6
. Necessary and sufficient conditions for
cmolit#

theorem. Equivalent statement ..

I
.

The n dimensional system in -_AxtBu
is controllable according to its definition. .

2 .
The n x n matrix

Welt) = § BBTEATT

= gote Att -T)BBTEATH -E)de
is nonsingular for any t> o
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.
The n xp controllability matrix
E -- IB AB - - - An-'B )

has rank a .

4 . The n x (ntp) matrix

[ A - XI
'

'

'

,,B] ha, fullrank

at every eigenvalue X of A .

(if X is complex, then gaussian elimination
with complex multiplication should be used) .

5
. If in addition all eigenvalues of A
hare negative realparts , then the
unique solution of

A Wct Wc AT= - BBT
is positive definite solution Wc .

The solution is called the controllability
grummian

we J!EATBBTEATTDT
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